Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 650316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268110

RESUMO

Despite current strategies combining surgery, radiation, and chemotherapy, glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Tumor location plays a key role in the prognosis of patients, with GBM tumors located in close proximity to the lateral ventricles (LVs) resulting in worse survival expectancy and higher incidence of distal recurrence. Though the reason for worse prognosis in these patients remains unknown, it may be due to proximity to the subventricular zone (SVZ) neurogenic niche contained within the lateral wall of the LVs. We present a novel rodent model to analyze the bidirectional signaling between GBM tumors and cells contained within the SVZ. Patient-derived GBM cells expressing GFP and luciferase were engrafted at locations proximal, intermediate, and distal to the LVs in immunosuppressed mice. Mice were either sacrificed after 4 weeks for immunohistochemical analysis of the tumor and SVZ or maintained for survival analysis. Analysis of the GFP+ tumor bulk revealed that GBM tumors proximal to the LV show increased levels of proliferation and tumor growth than LV-distal counterparts and is accompanied by decreased median survival. Conversely, numbers of innate proliferative cells, neural stem cells (NSCs), migratory cells and progenitors contained within the SVZ are decreased as a result of GBM proximity to the LV. These results indicate that our rodent model is able to accurately recapitulate several of the clinical aspects of LV-associated GBM, including increased tumor growth and decreased median survival. Additionally, we have found the neurogenic and cell division process of the SVZ in these adult mice is negatively influenced according to the presence and proximity of the tumor mass. This model will be invaluable for further investigation into the bidirectional signaling between GBM and the neurogenic cell populations of the SVZ.

2.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008740

RESUMO

Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity. Additionally, they have emerged as mediators of resistance to different anticancer treatments, including chemotherapy, radiotherapy, immunotherapy, and antiangiogenic therapy. Particularly in GBM, galectins control tumor cell transformation and proliferation, reprogram tumor cell migration and invasion, promote vascularization, modulate cell death pathways, and shape the tumor-immune landscape by targeting myeloid, natural killer (NK), and CD8+ T cell compartments. Here, we discuss the role of galectins, particularly galectin-1, -3, -8, and -9, as emerging glyco-checkpoints that control different mechanisms associated with GBM progression, and discuss possible therapeutic opportunities based on inhibition of galectin-driven circuits, either alone or in combination with other treatment modalities.


Assuntos
Galectinas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Terapia de Alvo Molecular , Polissacarídeos/metabolismo , Animais , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...